January 3, 2021
K-Concatenation Maximum Sum in Python
Given an integer array arr and an integer k, modify the array by repeating it k times.
For example, if arr = [1, 2] and k = 3 then the modified array will be [1, 2, 1, 2, 1, 2].
Return the maximum sub-array sum in the modified array. Note that the length of the sub-array can be 0 and its sum in that case is 0.
As the answer can be very large, return the answer modulo 10^9 + 7.
Example 1:
Input: arr = [1,2], k = 3
Output: 9
Example 2:
Input: arr = [1,-2,1], k = 5
Output: 2
Example 3:
Input: arr = [-1,-2], k = 7
Output: 0
Constraints:
1 <= arr.length <= 10^5
1 <= k <= 10^5
-10^4 <= arr[i] <= 10^4
Solution:
class Solution(object):
def kConcatenationMaxSum(arr, k):
def kadane(arr):
currsum, max_sum = arr[0], arr[0]
for i in range(1, len(arr)):
currsum = max(arr[i], currsum + arr[i])
max_sum = max(max_sum, currsum)
return max_sum
def prefix(arr):
currsum, max_val = 0, float('-inf')
for i, val in enumerate(arr):
currsum += val
max_val = max(max_val, currsum)
return max_val
def suffix(arr):
currsum, max_val = 0, float('-inf')
for i in range(len(arr)-1, -1, -1):
currsum += arr[i]
max_val = max(max_val, currsum)
return max_val
if not arr:
return 0
if k == 1:
return max(0, kadane(arr)) % (10 ** 9 + 7)
else:
return max(0, max((prefix(arr) + suffix(arr) + (k-2)*max(sum(arr), 0), kadane(arr)))) % (10 ** 9 + 7)
# Answer 1
arr = [1,2]
k = 3
print(Solution.kConcatenationMaxSum(arr, k))
# Answer 2
arr = [1,-2,1]
k = 5
print(Solution.kConcatenationMaxSum(arr, k))
# Answer 3
arr = [-1,-2]
k = 7
print(Solution.kConcatenationMaxSum(arr, k))